FRENIC-Ace New

The Next Generation Of Inverters Have Arrived

Introducing Our New Standard Inverter!

Enjoy A Full Range Of Applications

The standard inverter for the next generation, the FRENIC-Ace, can be used in most types of application-from fans and pumps to specialized machinery.

Customizable Logic

Customizable logic function is available as a standard feature. FRENIC-Ace has built-in customizable logic functions with a maximum of 200 steps including both digital and analog operation functions, giving customers the ability to customize their inverters-from simple logic functions to full-scale programming. Fuji Electric also has plans to offer programming templates for wire drawing machines, hoists, spinning machines, and other applications so that the FRENIC-Ace can be used as a dedicated purpose inverter.

Example: Hoist crane application

Programming the FRENIC-Ace main unit with the required logic for controlling a hoist

(3) Mechanical limit switch function
(4) Detect load
(5) Automatic speed drive when no load is detected
(6) Overload stop function

Dedicated/specialized functions for hoist application implemented by using customizable logic

Superior Flexibility

FRENIC-Ace has readily available interface cards and various types of fieldbus / network to maximize its flexibility.

Option Category	Option Name	Mounting adapter for option card		
		0002 to 0044 (400V), 0001 to 0069 (200V)	0059 to 0072 (400V), 0069 to 0115 (200V)	more than 0085 (400V)
Terminal block	RS-485 communications card	Unnecessary		
	PG interface (5V) card			
	PG interface (12/15V) card			
Communication "1	DeviceNet communication card	The adapter is mounted on the front side of the inverter. (OPC-E2-ADP1)	The adapter is mounted inside of the inverter. (OPC-E2-ADP2)	The adapter is mounted inside of the inverter. (OPC-E2-ADP3)
	CC-Link communication card			
	PROFIBUS-DP communication card ${ }^{2}$			
	EtherNet/IP communication card ${ }^{2}$			
	ProfiNet-RT communication card ${ }^{2}$			
	CANopen communication card "2			
Input / Output interface ${ }^{\text {¹ }}$	Digital Input / Output interface card			
	Analog Output interface interface card			

${ }^{*} 1$ Available by the combination use of the mounting adapter.
*2 Coming soon.

Wide Variety Of Functions As A Standard Feature

[^0]
Multi-Function Keypad (option)

FRENIC-Ace has two different multi-function keypads available

- Multi-function keypad with LCD display: Enhanced HMI functionality
- Keypad with USB port : Connect to a computer for more efficient operation (set-up, troubleshooting, maintenance, etc)

Multi-function keypad with LCD screen

Keypad with USB port

Functional Safety

FRENIC-Ace is equipped with STO functional safety function as a standard. Therefore output circuit magnetic contactors are not required for safe stop implementation. Enhanced standard features position FRENIC-Ace ahead of its class (Safety input: 2CH, output: 1CH).

-Complies with (coming soon)

EN ISO 13849-1: 2008, Cat. 3 / PL=e
IEC/EN 61800-5-2: 2007 SIL3 (Safety feature: STO)
IEC/EN 60204-1: 2005/2006 Stop category 0
IEC/EN 61508-1 to -7: 2010 SIL3

10 Years Lifetime Design

FRENIC-Ace components have a design life of ten years.
A longer maintenance cycle also helps to reduce running costs.

Design life ${ }^{2}$	Main circuit capacitor		10 years ${ }^{11}$
	Electrolytic capacitors on PCB		10 years ${ }^{11}$
	Cooling fan		10 years ${ }^{* 1}$
	Life conditions	Ambient temperature	$+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
		Load rate	100\% (HHD specifications) 80\% (HND/HD/ND specifications)

*1 ND specifications have a rated current of two sizes higher than HHD specifications, so the life is 7 years.
*2 The designed lives are the calculated values and not the guaranted ones.

Standards

RoHS Directive

Standard compliance with European regulations that limit the use of specific hazardous substances (RoHS)

<Six hazardous

 substances>Lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl
(PBB), polybrominated biphenyl ether (PBDE)
<About RoHS> Directive 2002/95/EC, issued by the European Parliament and European

Global Compliance
Standard compliance

Standard Model Specifications

Three phase 400V class series

Items			Specifications										
Type			FRN $\square \square \square \square \mathrm{E} 2 \mathrm{~S}-4 \mathrm{GA}$,FRN $\square \square \square \square \mathrm{E} 2 \mathrm{~S}-4 \mathrm{~GB}$					FRN \qquad E2S-4A, FRN \qquad E2S-4E, FRN \square E2S-4K, FRN \square E2S-4U					
			0002	0004	0006	0007	0012	0022	0029	0037	0044	0059	0072
Nominal applied motor ${ }^{11}$ [kW]		ND	0.75	1.5	2.2	3.0	5.5	11	15	18.5	22	30	37
		HD	0.75	1.1	2.2	3.0	5.5	7.5	11	15	18.5	22	30
		HND	0.75	1.1	2.2	$3.0{ }^{10}$	$5.5{ }^{10}$	7.5	11	15	18.5	22	30
		HHD	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output ratings	Rated capacity [kVA] ${ }^{2}$	ND	1.6	3.1	4.2	5.3	9.1	16	22	28	34	45	55
		HD	1.4	2.6	3.8	4.8	8.5	13	18	24	29	34	46
		HND	1.4	2.6	3.8	$4.8{ }^{\text {¹0 }}$	$8.5{ }^{10}$	13	18	24	29	34	46
		HHD	1.1	1.9	3.2	4.2	6.9	9.9	14	18	23	30	34
	Rated voltage [V] ${ }^{\text {3/ }}$		Three-phase 380 to 480V (With AVR)										
	Rated current $[A]^{\text {4 }}$	ND	2.1	4.1	5.5	6.9	12	21.5	28.5	37.0	44.0	59.0	72.0
		HD	1.8	3.4	5.0	6.3	11.1	17.5	23.0	31.0	38.0	45.0	60.0
		HND	1.8	3.4	5.0	$6.3{ }^{* 10}$	11.1^{10}	17.5	23.0	31.0	38.0	45.0	60.0
		HHD	1.5	2.5	4.2	5.5	9.0	13.0	18.0	24.0	30.0	39.0	45.0
	Overload capability	ND, HND	120% of nominal current for 1 min										
		HD	150% of nominal current for 1 min										
		HHD	150\% of nominal current for 1 min or 200% of nominal current for 0.5 s										
Input ratings	Main power supply		Three-phase 380 to 480V (With AVR)										
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance:2\% or less ${ }^{8}$, Frequency: +5 to -5%)										
	Rated current without DCR ${ }^{55}[A]$	ND	2.7	4.8	7.3	11.3	16.8	33.0	43.8	52.3	60.6	77.9	94.3
		HD	2.7	3.9	7.3	11.3	16.8	23.2	33.0	43.8	52.3	60.6	77.9
		HND	2.7	3.9	7.3	$11.3{ }^{10}$	$16.8{ }^{\text {¹0 }}$	23.2	33.0	43.8	52.3	60.6	77.9
		HHD	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8	52.3	60.6
	Rated current with DCR ${ }^{55}[\mathrm{~A}]$	ND	1.5	2.9	4.2	5.8	10.1	21.1	28.8	35.5	42.2	57.0	68.5
		HD	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57.0
		HND	1.5	2.1	4.2	$5.8{ }^{\text {¹0 }}$	10.1^{110}	14.4	21.1	28.8	35.5	42.2	57.0
		HHD	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8	35.5	42.2
	Required power supply capacity ${ }^{\text {* }}$ [kVA]	ND	1.1	2.1	3.0	4.1	7.0	15	20	25	29	39	47
		HD	1.1	1.5	3.0	4.1	7.0	10	15	20	25	29	39
		HND	1.1	1.5	3.0	4.1^{110}	7.0 ${ }^{10}$	10	15	20	25	29	39
		HHD	0.6	1.2	2.1	3.1	5.1	7.3	10	15	20	25	29
Braking	Braking torque ${ }^{7}$ [\%]	ND	53\%	50\%	48\%	29\%	27\%	12\%					
		HD	53\%	68\%	48\%	29\%	27\%	15\%					
		HND	53\%	68\%	48\%	29\% ${ }^{+10}$	27\% ${ }^{10}$	15\%					
		HHD	100\%		70\%	40\%		20\%					
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current										
	Braking chopper		Built-in										
	Minimum connectable resistance[ohm]		200		160		130	80	60	40	34.4		
	Braking resistor		Option										
DC reactor (DCR)		ND	Option										
		HND, HD	Option										
		HHD	Option										
Enclosure (IEC60529)			IP20, UL open type										
Cooling method			Natural cooling		Fan cooling								
Mass [kg]			1.2	1.5	1.5	1.6	1.9	5.0	5.0	8.0	9.0	9.5	10

1 Fuji 4-pole standard motor. At the selection of the inverter rating, consider not only the rating capacity(kW) is enough but also inverter output current is larger than selected the motor's nominal current.
*2 Rated capacity is calculated by assuming the output rated voltage as 440 V .
*3 The output voltage cannot exceed the power supply voltage.
4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current.
HHD spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to 0168 : 10 kHz ,
type 0203 to $0590: 6 \mathrm{kHz}$
HND spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0059: 10 \mathrm{kHz}$,
type 0072 to $0168: 6 \mathrm{kHz}$, type 0203 to $0590: 4 \mathrm{kHz}$
HD,ND spec.---All type : 4 kHz
The rated output current at HD/ND spec. is decreased 2% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more.

5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%. Be sure to use the DCR when applicable motor capacity is 75 kW or above.
*6 Obtained when a DC reactor (DCR) is used.
*7 Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
*8 Voltage unbalance (\%) $=($ Max. voltage (V) - Min. voltage (V))/Three -phase average voltage $(\mathrm{V}) \times 67$ (IEC 61800-3) If this value is 2 to 3%, use an optional AC reactor (ACR).
*10 HND spec. of the type 0007 and 0012: allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$
The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more.

Standard Model Specifications

Three phase 400V class series

Items			Specifications										
Type			FRN $\square \square \square \square$ E2S-4A, FRN $\square \square \square \square$ E2S-4E, FRN $\square \square \square \square$ E2S-4K, FRN $\square \square \square \square$ E2S-4U										
			0085	0105	0139	0168	0203	0240	0290	0361	0415	0520	0590
Nominal applied motor ${ }^{1}$ [kW]		ND	45	55	75	90	110	132	160	200	220	280	315
		HD	37	45	55	75	90	110	132	160	200	220	250
		HND	37	45	55	75	90	110	132	160	200	220	280
		HHD	30	37	45	55	75	90	110	132	160	200	220
Output ratings	Rated capacity [KVA$]^{2}$	ND	65	80	106	128	155	183	221	275	316	396	450
		HD	57	69	85	114	134	160	193	232	287	316	364
		HND	57	69	85	114	134	160	193	232	287	316	396
		HHD	46	57	69	85	114	134	160	193	232	287	316
	Rated voltage [V] ${ }^{\text {3 }}$		Three-phase 380 to 480 V (With AVR)										
	Rated current $[\mathrm{A}]^{\text {/4 }}$	ND	85.0	105	139	168	203	240	290	361	415	520	590
		HD	75.0	91.0	112	150	176	210	253	304	377	415	477
		HND	75.0	91.0	112	150	176	210	253	304	377	415	520
		HHD	60.0	75.0	91.0	112	150	176	210	253	304	377	415
	Overload capability	ND, HND	120% of nominal current for 1 min										
		HD	150\% of nominal current for 1 min										
		HHD	150% of nominal current for 1 min or 200% of nominal current for 0.5 s										
Input ratings	Main power supply		Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$				Three-phase 380 to $440 \mathrm{~V}, 50 \mathrm{~Hz}{ }^{*}$ Three-phase 380 to $480 \mathrm{~V}, 60 \mathrm{~Hz}$						
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance:2\% or less ${ }^{8}$, Frequency: +5 to -5%) ${ }^{\text {8 }}$ 8										
	Rated current without DCR ${ }^{55}[A]$	ND	114	140	-	-	-	-	-	-	-	-	-
		HD	94.3	114	140	-	-	-	-	-	-	-	-
		HND	94.3	114	140	-	-	-	-	-	-	-	-
		HHD	77.9	94.3	114	140	-	-	-	-	-	-	-
	Rated current with $\operatorname{DCR}{ }^{55}[\mathrm{~A}]$	ND	83.2	102	138	164	201	238	286	357	390	500	559
		HD	68.5	83.2	102	138	164	201	238	286	357	390	443
		HND	68.5	83.2	102	138	164	201	238	286	357	390	500
		HHD	57.0	68.5	83.2	102	138	164	201	238	286	357	390
	Required power supply capacity ${ }^{*}$ [kVA]	ND	58	71	96	114	139	165	199	248	271	347	388
		HD	47	58	71	96	114	140	165	199	248	271	307
		HND	47	58	71	96	114	140	165	199	248	271	347
		HHD	39	47	58	71	96	114	140	165	199	248	271
Braking	Braking torque ${ }^{7}$ [\%]	ND	5 to 9\%										
		HD	7 to 12\%										
		HND	7 to 12\%										
		HHD	$10 \text { to 15\% }$										
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current										
	Braking chopper		Option										
	Minimum connection resistance[ohm]		-	-	-	-	-	-	-	-	-	-	-
	Braking resistor		Option										
DC reactor (DCR)		ND	Option										
		HND, HD	Option										
		HHD	Option										
Enclosure (IEC60529)			IP00, UL open type										
Cooling method			Fan cooling										
Mass [kg]			25	26	30	33	40	62	63	95	96	130	140

*1 Fuji 4-pole standard motor. At the selection of the inverter rating, consider not only the rating capacity(kW) is enough but also inverter output current is larger than selected the motor's nominal current.
*2 Rated capacity is calculated by assuming the output rated voltage as 440 V .

* 2 Rated capacity is calculated by assuming the output rated
*4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be nec
HHD spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0168: 10 \mathrm{kHz}$, type 0203 to $0590: 6 \mathrm{kHz}$
HND spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0059: 10 \mathrm{kHz}$, type 0072 to $0168: 6 \mathrm{kHz}$, type 0203 to $0590: 4 \mathrm{kHz}$
The rated output current at HD/ND spec. is decreased 2% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more.
*5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and \%X is 5%. Be sure to use the DCR when applicable motor capacity is 75 kW or above.
6 Obtained when a DC reactor (DCR) is used.
${ }^{*} 7$ Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
8 Voltage unbalance $(\%)=($ Max. voltage (V) - Min. voltage (V))/Three -phase average voltage $(\mathrm{V}) \times 67$ (IEC 61800-3) If this value is 2 to 3%, use an optional AC reactor (ACR).

Standard Model Specifications

Three phase 200V class series

Items			Specifications												
Type			FRN $\square \square \square \square$ E2S-2GA,FRN $\square \square \square \square$ E2S-2GB							FRN $\square \square \square \square E 2 S-2 A$, FRN $\square \square \square \square E 2 S-2 E$,FRN $\square \square \square \square E 2 S-2 K, ~ F R N \square \square \square \square E 2 S-2 U$					
			0001	0002	0004	0006	0010	0012	0020	0030	0040	0056	0069	0088	0115
Nominal applied motor ${ }^{11}$ [kW]		HND	0.2	0.4	0.75	1.1	2.2	$3.0{ }^{10}$	$5.5{ }^{\text {10 }}$	7.5	11	15	18.5	22	30
		HHD	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output ratings	Rated capacity [${ }^{\text {kVA] }]^{2}}$	HND	0.5	0.8	1.3	2.3	3.7	$4.6{ }^{10}$	7.5^{10}	11	15	21	26	34	44
		HHD	0.3	0.6	1.1	1.9	3.0	4.2	6.7	9.5	13	18	23	29	34
	Rated voltage [V] ${ }^{3}$		Three-phase 200 to 240V (With AVR)												
	Rated current [A] ${ }^{\text {+ }}$	HND	1.3	2.0	3.5	6.0	9.6	12^{40}	$19.6{ }^{10}$	30	40	56	69	88	115
		HHD	0.8	1.6	3.0	5.0	8.0	11	17.5	25	33	47	60	76	90
	Overload capability	HND	120\% of nominal current for 1 min												
		HHD	150\% of nominal current for 1 min or 200% of nominal current for 0.5 s												
Input ratings	Main power supply		Three-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$												
	Voltage/frequency variations		Voltage: +10 to -15\% (Voltage unbalance:2\% or less ${ }^{88}$, Frequency: +5 to -5%)												
	Rated current without DCR ${ }^{55}$ [A]	HND	1.8	2.6	4.9	6.7	12.8	$17.9{ }^{10}$	31.9* ${ }^{10}$	42.7	60.7	80.0	97.0	112	151
		HHD	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.0	97.0	112
	Rated current with DCR ${ }^{55}[\mathrm{~A}]$	HND	0.93	1.6	3.0	4.3	8.3	11.7^{10}	$19.9{ }^{10}$	28.8	42.2	57.6	71.0	84.4	114
		HHD	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6	71.0	84.4
	Required power supply capacity ${ }^{6}[\mathrm{KVA}]$	HND	0.4	0.6	1.1	1.5	2.9	4.1^{110}	$6.9{ }^{10}$	10	15	20	25	30	40
		HHD	0.2	0.4	0.6	1.1	2.0	2.9	4.9	7.3	10	15	20	25	30
Braking	Braking torque ${ }^{7}$ [\%]	HND	75\%		53\%	68\%	48\%	29\% ${ }^{+10}$	$27 \%{ }^{10}$	15\%					
		HHD	150\%		100\%		70\%	40\%		20\%					
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current												
	Braking chopper		Built-in												
	Minimum connection resistance[ohm]		100				40		33	20	15	10	8.6		
	Braking resistor		Option												
DC reactor (DCR)		HND	Option												
		HHD	Option												
Enclosure (IEC60529)			IP20, UL open type												
Cooling method			Naturalural cooling				Fan cooling								
Mass [kg]			0.5	0.5	0.6	0.8	1.5	1.5	1.8	5.0	5.0	8.0	9.0	9.5	10

*1 Fuji 4-pole standard motor. At the selection of the inverter rating, consider not only the rating capacity(kW) is enough but also inverter output current is larger than selected the motor's nominal current
*2 Rated capacity is calculated by assuming the output rated voltage as 220 V .
*3 Output voltage cannot exceed the power supply voltage.
*4 When the carrier frequency (F26) is set to below value or higher, the HHD spec.---type 0001 to 0020 : 8 kHz , type 0030 to 0115 : 10kHz,
*5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.
Obtained when a DC reactor (DCR) is used.
*7 Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
Voltage unbalance $(\%)=($ Max. voltage $(\mathrm{V})-$ Min. voltage (V))/Three -phase average voltage (V) $\times 67$ (IEC 61800-3) If this value is 2 to 3%, use an optional AC reactor (ACR).
10 HND spec. of the type 0012 and 0020: allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$ or less.
The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more

Standard Model Specifications

Single phase 200V class series

Items			Specifications					
Type			FRN $\square \square \square \square \mathrm{E} 2 \mathrm{~S}-7 \mathrm{GA}, \mathrm{FRN} \square \square \square \square \mathrm{E} 2 \mathrm{~S}-7 \mathrm{~GB}$					
			0001	0002	0003	0005	0008	0011
Nominal applied motor ${ }^{11}$ [kW]		HHD	0.1	0.2	0.4	0.75	1.5	2.2
Output ratings	Rated capacity [kVA] ${ }^{2}$	HHD	0.3	0.6	1.1	1.9	3.0	4.2
	Rated voltage [V] ${ }^{\text {3 }}$		Three-phase 200 to 240V (With AVR)					
	Rated current [A] ${ }^{+4}$	HHD	0.8	1.6	3.0	5.0	8.0	11
	Overload capability HHD Main power supply		150% of nominal current for 1 min or 200% of nominal current for 0.5 s					
Input ratings			Three-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Voltage/frequency variations		Voltage: +10 to -15\% (Voltage unbalance:2\% or less ${ }^{* 8}$, Frequency: +5 to -5%)					
	Rated current without DCR ${ }^{55}$ [A]	HHD	1.8	3.3	5.4	9.7	16.4	24.8
	Rated current with DCR ${ }^{5}$ [A]	HHD	1.1	2.0	3.5	6.4	11.6	17.5
	Required power supply capacity ${ }^{\text {6 }}[\mathrm{KVA}]$	HHD	0.3	0.4	0.7	1.3	2.4	3.5
Braking	Braking torque ${ }^{7}$ [\%]	HHD	Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100% (HHD spec.) of nominal current					
	DC braking							
	Braking chopper		Built-in					
	Minimum connection resistance [ohm]		100				40	
	Braking resistor		Option					
DC reactor (DCR)		HHD	Option					
Enclosure (IEC60529)			IP20, UL open type					
Cooling method			Naturalural cooling				Fan cooling	
Mass [kg]			0.5	0.5	0.6	0.9	1.6	1.8

*1 Fuji 4-pole standard motor. At the selection of the inverter rating, consider not only the rating capacity (kW) is enough
but also inverter output current is larger than selected the motor's nominal current.
*2 Rated capacity is calculated by assuming the output rated voltage as 220 V .
*3 Output voltage cannot exceed the power supply voltage.
*4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current HHD spec.---type 0001 to 0011 : 8 kHz
5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and \%X is 5%
6 Obtained when a DC reactor (DCR) is used.
${ }^{*} 7$ Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)

EMC Filter Built-in Type Specifications

Three phase 400V class series

Items			Specifications										
Type			FRN $\square \square \square \square \mathrm{E} 2 \mathrm{E}-4 \mathrm{GA}, \mathrm{FRN} \square \square \square \square \mathrm{E} 2 \mathrm{E}-4 \mathrm{~GB}$					FRN $\square \square \square \square \mathrm{E} 2 \mathrm{E}-4 \mathrm{E}$					
			0002	0004	0006	0007	0012	0022	0029	0037	0044	0059	0072
Nominal applied motor ${ }^{11}$ [kW]		ND	0.75	1.5	2.2	3.0	5.5	11	15	18.5	22	30	37
		HD	0.75	1.1	2.2	3.0	5.5	7.5	11	15	18.5	22	30
		HND	0.75	1.1	2.2	$3.0{ }^{\circ}$	$5.5{ }^{\text {¢ }}$	7.5	11	15	18.5	22	30
		HHD	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output ratings	Rated capacity [kVA] ${ }^{2}$	ND	1.6	3.1	4.2	5.3	9.1	16	22	28	34	45	55
		HD	1.4	2.6	3.8	4.8	8.5	13	18	24	29	34	46
		HND	1.4	2.6	3.8	$4.8{ }^{*}$	$8.5{ }^{\text { }}$	13	18	24	29	34	46
		HHD	1.1	1.9	3.2	4.2	6.9	9.9	14	18	23	30	34
	Rated voltage [V] ${ }^{\text {3 }}$		Three	hase 38	480 V	ith AVR)							
		ND	2.1	4.1	5.5	6.9	12	21.5	28.5	37.0	44.0	59.0	72.0
		HD	1.8	3.4	5.0	6.3	11.1	17.5	23.0	31.0	38.0	45.0	60.0
	Rat	HND	1.8	3.4	5.0	$6.3{ }^{*}$	$11.1^{\circ 9}$	17.5	23.0	31.0	38.0	45.0	60.0
		HHD	1.5	2.5	4.2	5.5	9.0	13.0	18.0	24.0	30.0	39.0	45.0
	Overload capability	ND, HND	120\% of nominal current for 1 min										
		HD	150\%	nomina	urrent	1 min							
		HHD	150\%	nomina	urrent	1 min or	00\% of n	minal c	ent for				
Input ratings	Main power supply		Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										
	Voltage/frequency	tions	Volta	+10 to	\% (Vol	e unbal	ce:2\% or	less ${ }^{8}$, F	quency	to -5			
		ND	2.7	4.8	7.3	11.3	16.8	33.0	43.8	52.3	60.6	77.9	94.3
	Rated current	HD	2.7	3.9	7.3	11.3	16.8	23.2	33.0	43.8	52.3	60.6	77.9
	without DCR ${ }^{5}$ [A]	HND	2.7	3.9	7.3	11.3°	$16.8{ }^{\text {9 }}$	23.2	33.0	43.8	52.3	60.6	77.9
		HHD	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8	52.3	60.6
		ND	1.5	2.1	4.2	5.8	10.1	21.1	28.8	35.5	42.2	57.0	68.5
	Rated current	HD	1.5	2.1	4.2	5.8	10.1	14.4	21.1	28.8	35.5	42.2	57.0
	with DCR ${ }^{5}[A]$	HND	1.5	2.1	4.2	$5.8{ }^{\circ}$	$10.1{ }^{\circ}$	14.4	21.1	28.8	35.5	42.2	57.0
		HHD	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8	35.5	42.2
	Required power supply capacity ${ }^{\text {6 }}$ [kVA]	ND	1.1	1.5	3.0	4.1	7.0	15	20	25	29	39	47
		HD	1.1	1.5	3.0	4.1	7.0	10	15	20	25	29	39
		HND	1.1	1.5	3.0	4.1^{+9}	$7.0^{\circ 9}$	10	15	20	25	29	39
		HHD	0.6	1.2	2.1	3.1	5.1	7.3	10	15	20	25	29
Braking	Braking torque ${ }^{7}$ [\%]	ND	53\%	50\%	48\%	29\%	27\%	12\%					
		HD	53\%	68\%	48\%	29\%	27\%	15\%					
		HND	53\%	68\%	48\%	29\%* ${ }^{\text {a }}$	27\% ${ }^{\text {a }}$	15\%					
		HHD	100\%		70\%	40\%		20\%					
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current										
	Braking chopper		Built-										
	Minimum connection r	ance [ohm]					130	80	60	40	34.4		
	Braking resistor		Optio										
EMC filter			Compliant with EMC Directives, Emission: Category C2. Immunity: Category C3 (2nd Env.) (EN61800-3: 2004)(Pending)					Compliant with EMC Directives, Emission: Category C3. Immunity: Category C3(2nd Env.)(EN61800-3:2004)					
DC reactor (DCR)		ND	Optio										
		HND, HD	Optio										
		HHD	Optio										
Enclosure (IE	60529)		IP20,	open ty									
Cooling meth			Natur	cooling	Fan c								
Mass [kg]			1.5	1.8	2.3	2.3	2.4	6.5	6.5	11.2	11.2	10.5	11.2

*1 Fuji 4-pole standard motor. At the selection of the inverter rating, consider not only the rating capacity(kW) is enough but also inverter output current is larger than selected the motor's nominal current.
Rated capacity is calculated by assuming the output rated voltage as 440 V .
*3 Output voltage cannot exceed the power supply voltage.
*4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current.
HHD spec.---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to 0168 : 10kHz, type 0203 to 0590 : 6kHz HND spec.---type 0002 to $0006: 8 \mathrm{kHz}$, type 0007 to $0012: 4 \mathrm{kHz}$, type 0022 to $0168: 6 \mathrm{kHz}$, type 0203 to $0590: 4 \mathrm{kHz}$ HD,ND spec.---All type : 4kHz
*5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% X$ is 5%.Be sure to use the DCR when applicable motor capacity is 75 kW or above.
*6 Obtained when a DC reactor (DCR) is used.
*7 Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
*8 Voltage unbalance $(\%)=($ Max. voltage $(V)-$ Min. voltage (M))/Three -phase average voltage $(M) \times 67$ (IEC $61800-3$) If this value is 2 to 3%, use an optional AC reactor (ACR).
${ }^{\circ}$ HND spec. of the type 0007 and 0012: allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or less. The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more

EMC Filter Built-in Type Specifications

Three phase 400V class series

Items			Specifications										
Type			FRN $\square \square \square \square E 2 E-4 E$										
			0085	0105	0139	0168	0203	0240	0290	0361	0415	0520	0590
Nominal applied motor ${ }^{11}$ [kW]		ND	45	55	75	90	110	132	160	200	220	280	315
		HD	37	45	55	75	90	110	132	160	200	220	250
		HND	37	45	55	75	90	110	132	160	200	220	280
		HHD	30	37	45	55	75	90	110	132	160	200	220
Rated capacity [kVA] ${ }^{2}$		ND	65	80	106	128	155	183	221	275	316	396	450
		HD	57	69	85	114	134	160	193	232	287	316	364
		HND	57	69	85	114	134	160	193	232	287	316	396
		HHD	46	57	69	85	114	134	160	193	232	287	316
Output ratings	Rated voltage [V] ${ }^{\text {3 }}$		Three-phase 380 to 480 V (With AVR)										
	Rated current $[A]^{+4}$	ND	85.0	105	139	168	203	240	290	361	415	520	590
		HD	75.0	91.0	112	150	176	210	253	304	377	415	477
		HND	75.0	91.0	112	150	176	210	253	304	377	415	520
		HHD	60.0	75.0	91.0	112	150	176	210	253	304	377	415
	Overload capability	ND, HND	120\% of nominal current for 1 min										
		HD	150% of nominal current for 1 min										
		HHD	150% of nominal current for 1 min or 200% of nominal current for 0.5 s										
Input ratings	Main power supply		Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$				Three-phase 380 to $440 \mathrm{~V}, 50 \mathrm{~Hz}$ Three-phase 380 to $480 \mathrm{~V}, 60 \mathrm{~Hz}^{*} 9$						
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance:2\% or less ${ }^{8}$, Frequency: +5 to -5%)										
	Rated current without DCR ${ }^{55}[A]$	ND	114	140	-	-	-	-	-	-	-	-	-
		HD	94.3	114	140	-	-	-	-	-	-	-	-
		HND	94.3	114	140	-	-	-	-	-	-	-	-
		HHD	77.9	94.3	114	140	-	-	-	-	-	-	-
	Rated current with DCR ${ }^{55}[A]$	ND	83.2	102	138	164	201	238	286	357	390	500	559
		HD	68.5	83.2	102	138	164	201	238	286	357	390	443
		HND	68.5	83.2	102	138	164	201	238	286	357	390	500
		HHD	57.0	68.5	83.2	102	138	164	201	238	286	357	390
	Required power supply capacity ${ }^{\text {© }}$ [kVA]	ND	58	71	96	114	139	165	199	248	271	347	388
		HD	47	58	71	96	114	140	165	199	248	271	307
		HND	47	58	71	96	114	140	165	199	248	271	347
		HHD	39	47	58	71	96	114	140	165	199	248	271
Braking	Braking torque ${ }^{7}$ [\%]	ND	5 to 9\%										
		HD	7 to 12\%										
		HND	7 to 12\%										
		HHD	10 to 15\%										
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 60% (ND spec.), 0 to 80% (HD/HND spec.), 0 to 100% (HHD spec.) of nominal current										
	Braking chopper		Option										
	Minimum connection resistance[ohm]		-	-	-	-	-	-	-	-	-	-	-
	Braking resistor		Option										
EMC filter ${ }^{\text {¹0 }}$			Compliant with EMC Directives, Emission and Immunity: Category C3 (2nd Env.) (EN61800-3:2004)										
DC reactor (DCR)		ND	Option										
		HND, HD	Option										
		HHD	Option										
Enclosure (IEC60529)			IP00, UL open type										
Cooling method			Fan cooling										
Mass [kg]			26	27	31	33	40	62	63	95	96	130	140

[^1]
EMC Filter Built-in Type Specifications

Three phase 200V class series

Items			Specifications						
Type			FRN $\square \square \square \square \mathrm{E} 2 \mathrm{E}-2 \mathrm{GA}$						
			0001	0002	0004	0006	0010	0012	0020
Nominal applied motor ${ }^{11}$ [kW]		HND	0.2	0.4	0.75	$1.1{ }^{+9}$	2.2	$3.0{ }^{\circ}$	5.5 *
		HHD	0.1	0.2	0.4	0.75	1.5	2.2	3.7
Output ratings	Rated capacity [kVA] ${ }^{\text {2 }}$	HND	0.5	0.8	1.3	$2.3{ }^{9}$	3.7	$4.6{ }^{\circ}$	$7.5{ }^{+9}$
		HHD	0.3	0.6	1.1	1.9	3.0	4.2	6.7
	Rated voltage [V] ${ }^{3}$		Three-phase 200 to 240 V (With AVR)						
	Rated current [A] ${ }^{\text {/4 }}$	HND	1.3	2.0	3.5	6.0	9.6	12^{*}	$19.6{ }^{\circ}$
		HHD	0.8	1.6	3.0	5.0	8.0	11	17.5
	Overload capability	HND	120\% of nominal current for 1 min						
		HHD	150% of nominal current for 1 min or 200% of nominal current for 0.5 s						
Input ratings	Main power supply		Three-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$						
	Voltage/frequency variations		Voltage: +10 to -15% (Voltage unbalance:2\% or less ${ }^{* 8}$, Frequency: +5 to -5%)						
	Rated current without DCR ${ }^{55}[A]$	HND	1.8	2.6	4.9	$6.7^{\prime 9}$	12.8	17.9 *9	$28.5{ }^{\circ}$
		HHD	1.1	1.8	3.1	5.3	9.5	13.2	22.2
	Rated current with DCR ${ }^{55}$ [A]	HND	0.93	1.6	3.0	$4.3{ }^{*}$	8.3	$11.7{ }^{\text {¢ }}$	$19.9{ }^{*}$
		HHD	0.57	0.93	1.6	3.0	5.7	8.3	14.0
	Required power supply capacity ${ }^{* 6}[\mathrm{kVA}]$	HND	0.4	0.6	1.1	$1.5{ }^{\circ}$	2.9	$4.1^{\circ 9}$	$6.9{ }^{\circ}$
		HHD	0.2	0.4	0.6	1.1	2.0	2.9	4.9
Braking	Braking torque ${ }^{7}$ [\%]	HND	75\%		53\%	68\% ${ }^{\text {9 }}$	48\%	29\% ${ }^{\text {a }}$	27\% ${ }^{\text { }}$
		HHD	150\%		100\%		70\%	40\%	
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 80% (HND spec.), 0 to 100\% (HHD spec.) of nominal current						
	Braking chopper		Built-in						
	Minimum connection resistance [ohm]		100				40		33
	Braking resistor		Option						
EMC filter			Compliant with EMC Directives, Emission: Category C2. Immunity: Category C3 (2nd Env.) (EN61800-3: 2004)						
DC reactor (DCR)		HND	Option						
		HHD	Option						
Enclosure (IEC60529)			IP20, UL open type						
Cooling method			Naturalural cooling				Fan cooling		
Mass [kg]			0.6	0.6	0.7	0.9	2.2	2.3	2.3

*1 Fuji 4-pole standard motor
Rated capacity is calculated by assuming the output rated voltage as 220 V .
*3 Output voltage cannot exceed the power supply voltage.
4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current.
HHD spec.---type 0001 to $0020: 8 \mathrm{kHz}$
HND spec.---type 0001 to $0020: 4 \mathrm{kHz}$
*5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.
Obtained when a DC reactor (DCR) is used.
${ }^{*} 7$ Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
Voltage unbalance $(\%)=($ Max. voltage $(\mathrm{V})-$ Min. voltage (V))/Three -phase average voltage $(\mathrm{V}) \times 67$ (IEC 61800-3) If this value is 2 to 3%, use an optional AC reactor (ACR).
HND spec. of the type 0006,0012 and 0020 : allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right)$ or less
The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more.

EMC Filter Bult-in Type Specifications

Single phase 200V class series

Items			Specifications					
Type			FRN $\square \square \square \square \mathrm{E} 2 \mathrm{E}-7 \mathrm{GA}, \mathrm{FRN} \square \square \square \square \mathrm{E} 2 \mathrm{E}-7 \mathrm{~GB}$					
			0001	0002	0003	0005	0008	0011
Nominal applied motor ${ }^{11}$ [kW]		HHD	0.1	0.2	0.4	0.75	1.5	2.2
Output ratings	Rated capacity [kVA] ${ }^{2}$	HHD	0.3	0.6	1.1	1.9	3.0	4.2
	Rated voltage [V] ${ }^{3}$		Three-phase 200 to 240V (With AVR)					
	Rated current [A] ${ }^{+4}$	HHD	0.8	1.6	3.0	5.0	8.0	11
	Overload capability HHD Main power supply		150% of nominal current for 1 min or 200% of nominal current for 0.5 s					
Input ratings			Single-phase 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Voltage/frequency variations		Voltage: +10 to -10\% Frequency: +5 to -5%					
	Rated current without DCR ${ }^{55}$ [A]	HHD	1.8	3.3	5.4	9.7	16.4	24.8
	Rated current with DCR ${ }^{5}$ [A]	HHD	1.1	2.0	3.5	6.4	11.6	17.5
	Required power supply capacity ${ }^{6}$ [kVA]	HHD	0.3	0.4	0.7	1.3	2.4	3.5
Braking	Braking torque ${ }^{7}$ [\%]	HHD	150\%		100\%		70\%	40\%
	DC braking		Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100\% (HHD spec.) of nominal current					
	Braking chopper							
	Minimum connectable resistance [ohm]							
	Braking resistor		Option					
EMC filter			Compliant with EMC Directives, Emission: Category C2. Immunity: Category C3 (2nd Env.) (EN61800-3:2004)					
DC reactor (DCR)		HHD	Option					
Enclosure (IEC60529)			IP20, UL open type					
Cooling method			Naturalural cool				Fan cooling	
Mass [kg]			0.6	0.6	0.7	1.1	2.3	2.3

*1 Fuji 4-pole standard motor. At the selection of the inverter rating, consider not only the rating capacity (kW) is enough but also inverter output current is larger than selected the motor's nominal current.
2 Rated capacity is calculated by assuming the output rated voltage as 220 V .
*3 Output voltage cannot exceed the power supply voltage
When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current HHD spec.---type 0001 to $0011: 8 \mathrm{kHz}$
*5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%.
6 Obtained when a DC reactor (DCR) is used.
*7 Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)

Common Specifications

	Items	Specifications	Remarks
	Maximum frequency	- HHD/HND/HD spec.: 25 to 500 Hz variable (V/f control mode, Magnetic pole position sensorless vector control mode) (Up to 200 Hz under vector control with speed sensor) - ND spec.: 25 to 120 Hz variable (all control mode)	IMPG-VC
	Base frequency	25 to 500 Hz variable (in conjunction with the maximum frequency)	
	Starting frequency	0.1 to 60.0 Hz variable (0.0 Hz under vector control with speed sensor)	IMPG-VC
	Carrier frequency	Three phase 400V class - Type 0002 to 0059: - 0.75 to 16 kHz variable (HHD/HND/HD spec.) - 0.75 to 10 kHz variable (ND spec.) - Type 0072 to 0168: - 0.75 to 16 kHz variable (HHD spec.) - 0.75 to 10 kHz variable (HND/HD spec.) -0.75 to 6 kHz variable (ND spec.) - Type 0203 or above type of capacity: - 0.75 to 10 kHz variable (HHD spec.) - 0.75 to 6 kHz variable (HND/HD/ND spec.) Three phase 200 V class - Type 0030,0040,0056,0069 - 0.75 to 16 kHz variable (HHD/HND/ spec.) - Type 0012 and 0020: - 0.75 to 16 kHz variable (HHD spec.) - 0.75 to 10 kHz variable (ND spec.) - Type 0115: - 0.75 to 16 kHz variable (HHD spec.) - 0.75 to 10 kHz variable (HND spec.) Single phase 200V class - Type 0001 to 0011 - 0.75 to 16 kHz variable (HHD spec.) Note: Carrier frequency drops automatically to protect the inverter depending on environmental temperature and output current. (This auto drop function can be canceled.)	
	Output frequency accuracy (Stability)	- Analog setting: $\pm 0.2 \%$ of maximum frequency $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$	
		- Keypad setting: $\pm 0.01 \%$ of maximum frequency -10 to $+50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)	
	Frequency setting resolution	- Analog setting: 0.05\% of maximum frequency	
		-Keypad setting: 0.01 Hz (99.99 Hz or less), 0.1 Hz (100.0 to 500.0 Hz)	
		- Link setting: 0.005% of maximum frequency or 0.01 Hz (fixed)	
	Speed control range	-1: 1500 (Minimum speed : Nominal speed, 4-pole, 1 to 1500 rpm)	IMPG-VC
		-1:100 (Minimum speed : Nominal speed, 4-pole, 15 to 1500 rpm)	IMPG-VF
		-1:10 (Minimum speed : Nominal speed, 6-pole, 180 to 1800 rpm)	PM-SVC
	Speed control accuracy	- Analog setting: $\pm 0.2 \%$ of maximum frequency or below $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$	IMPG-VC
		- Digital setting: $\pm 0.01 \%$ of maximum frequency or below 10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
		- Analog setting: $\pm 0.5 \%$ of base frequency or below $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$	
		- Digital setting: $\pm 0.5 \%$ of base frequency or below -10 to $+50^{\circ} \mathrm{C}$ (14 to 122 ${ }^{\circ} \mathrm{F}$)	PM-SVC
	Control method	- V/f control	VF
		- Speed sensor less vector control (Dynamic torque vector control)	IM-SVC(DTV)
		- V/f control with slip compensation active	VF with SC
		- V/f control with speed sensor (The PG option card is required.)	IMPG-VF
		- V/f Control with speed sensor (+Auto Torque Boost) (The PG option card is required.)	IMPG-ATB
		- Vector control with speed sensor (The PG option card is required.)	IMPG-VC
		- Vector control without magnetic pole position sensor	PM-SVC
	Voltage/Frequency characteristic	- Possible to set output voltage at base frequency and at maximum output frequency (80 to 240 V). - Possible to set output voltage at base frequency and at maximum output frequency (160 to 500 V).	
		- Non-linear V/f setting (3 points): Free voltage (0 to 500 V) and frequency (0 to 500 Hz) can be set. - Non-linear V/f setting (3 points): Free voltage (0 to 240 V) and frequency (0 to 500 Hz) can be set.	
	Torque boost	- Auto torque boost (For constant torque load) - Manual torque boost: Torque boost value can be set between 0.0 and 20.0\%. - Select application load with the function code. (Variable torque load or constant torque load)	
	Starting torque	Three phase 400V class - 200\% or above (HHD spec.:type 0072 or below) / 150% or higher (HHD spec.:type 0085 or above) at reference frequency 0.5 Hz - 120% or higher at reference frequency 0.5 Hz , (HND/ND spec.) -150% or higher at reference frequency 0.5 Hz , (HD spec.) (Base frequency 50 Hz , with activating the slip compensation and the auto torque boost mode, applied motor is Fuji 4-pole standard motor.) Three phase 200 V class and single phase 200 V class -200% or above (HHD spec.:type 0069 or below) at reference frequency 0.5 Hz -120% or higher at reference frequency 0.5 Hz , (HND spec.) (Base frequency 50 Hz , with activating the slip compensation and the auto torque boost mode, applied motor is Fuji 4-pole standard motor.)	

-0.75 to 10 kHz variable (HND spec.)

- Type 0001 to
-0.75 to 16 kHz variable (HHD spec.)
Nate

Common Specifications

Common Specifications

- The output voltage is controlled to minimize the total power loss of the motor and the inverter at a constant speed. overload, the inverter drops its output frequency automatically in order to escape overload situation

Cancels the undervoltage protection so that the inverter under an undervoltage condition runs the motor with battery/UPS power.

- Tuning mode to only identify \%R1 and \%X.
- Automatically adjusts motor parameters while the motor is driving in order to prevent the motor speed fluctuation caused by the temperature rise of the motor.
- Detects inverter internal temperature and stops cooling fan when the temperature is low.
- Switchable among the two motors. the data for 1st to 2nd motors.

Common Specifications

Common Specifications

	Items	Specifications				Remarks			
	Maintenance monitor	- Displays DC link bus voltage, Max. Output current in RMS, Input watt-hour, Input watt-hour data, Temperature (inside the inverter and heat sink, Maximum value of each one), Capacitance of the DC link bus capacitor, Lifetime of DC link bus capacitor (elapsed hours and remaining hours), Cumulative run time of power-ON time counter of the inverter, electrolytic capacitors on the printed circuit boards, cooling fan and each motor, Remaining time before the next motor maintenance, Remaining startup times before the next maintenance, Number of startups (of each motor), Light alarm factors (Latest to 3rd last), Contents and numbers of RS-485 communications errors, Option error factors, Number of option errors ,ROM version of Inverter, Keypad and Option port.							
	I/O checking	Shows the status of the terminal Digital input/output, Relay out, Analog input/output.							
	Locked by password	Limits to change or display in function code.							
	Trip mode	Displays the cause of trip by codes.							
	Light-alarm	Shows the light-alarm display L-AL.							
	Running or trip mode	- Trip history: Saves and displays the cause of the last four trips (with a code). - Saves and displays the detailed operation status data of the last four trips.							
	Installation location	Indoors							
	Ambient	Standard (Open Type) -10 to $+50^{\circ} \mathrm{C}$ (HHD/HND spec.) -10 to $+40^{\circ} \mathrm{C}$ (HD/ND spec.) NEMA/UL Type 1 -10 to $+40^{\circ} \mathrm{C}$ (HHD/HND spec.) -10 to $+30^{\circ} \mathrm{C}$ (HD/ND spec.)							
	Ambient humidity	5 to 95\%RH (without condensation)							
	Atmosphere	Shall be free from corrosive gases, flammable gases, oil mist, dusts, vapor, water drops and direct sunlight. (Pollution degree 2 (IEC60664-1)) The atmosphere must contain only a low level of salt. ($0.01 \mathrm{mg} / \mathrm{cm} 2$ or less per year)							
	Altitude	1000 m or lower If the inverter is used in an altitude above 1000 m , you should apply an output current derating factor as listed in							
		1000m or lower		Output current de	factor				
				1.00					
		1000 to 1500 m		0.97					
		1500 to 2000 m		0.95					
		2000 to 2500m		0.91					
		2500 to 3000 m		0.88					
	Vibration	Three phase 400V class series TYPE:0203 or below			TYPE:0240 or above				
		2 to less than 9Hz	3mm:(Max. amplitude)		3mm:(Max. amplitude)				
		9 to less than 20 Hz	$9.8 \mathrm{~m} / \mathrm{s}^{2}$		$2 \mathrm{~m} / \mathrm{s}^{2}$				
		20 to less than 55 Hz	$2 \mathrm{~m} / \mathrm{s}^{2}$		$2 \mathrm{~m} / \mathrm{s}^{2}$				
		55 to less than 200 Hz	$1 \mathrm{~m} / \mathrm{s}^{2}$		$1 \mathrm{~m} / \mathrm{s}^{2}$				
		Three phase 200 V class series	TYPE:0069 or below						
		2 to less than 9Hz	3mm:(Max. amplitude)						
		9 to less than 20 Hz	$9.8 \mathrm{~m} / \mathrm{s}^{2}$						
		20 to less than 55 Hz	$2 \mathrm{~m} / \mathrm{s}^{2}$						
		55 to less than 200 Hz	$1 \mathrm{~m} / \mathrm{s}^{2}$						
ف	Temperature	-25 to $+70^{\circ} \mathrm{C}$ (in transport)	Avoid such places where the inverter will be subjected to sudden changes in temperature that will cause condensation to form.						
		-25 to $+65^{\circ} \mathrm{C}$ (in storage)							
	Relative humidity	The inverter must not be exposed to dust, direct sunlight, corrosive or flammable gases, oil mist, vapor, water drops or vibration. The atmosphere must contain only a low level of salt. ($0.01 \mathrm{mg} / \mathrm{cm}^{2}$ or less per year)							
	Atmosphere								
	Atmospheric pressure	86 to 106 kPa (during storage)							
		70 to 106 kPa (during transportation)							

[^2]
Basic Wiring Diagram

With built-in CAN communication port and Single analog output

This wiring diagram is to be used as a reference only when using standard terminal block model. When wiring your inverter and/or before applying power, please always follow the connection diagrams and the relevant information written in the User's Manual.

Basic Wiring Diagram

Without built－in CAN communication port and with dual Analog outputs

NOTE

Terminal Functions

Terminal Functions

Source current: 2.5 to 5 mA Source current: 9.7 to 16 mA (terminal [X5])---Pulse train input Voltage level: 2 V or below

Operation current at OFF 0.5 mA or less Voltage: 22 to 27 VDC

Terminal Functions

Terminal Functions

$\begin{aligned} & \text { 그́ } \\ & \stackrel{\rightharpoonup}{0} \\ & \widetilde{0} \end{aligned}$	Symbol	Name	Functions	Remarks
	RJ-45 connector for the keypad	Standard RJ-45 connector (RS-485 communication port 1)	(1) Used to connect the inverter with the keypad. The inverter supplies the power to the keypad through the pins specified below. The extension cable for remote operation also uses wires connected to these pins for supplying the keypad power. (2) Remove the keypad from the standard RJ-45 connector, and connect the RS-485 communications cable to control the inverter through the PC or PLC (Programmable Logic Controller). The protocol selection is available from the following. - Modbus RTU - Fuji general-purpose inverter protocol - Asynchronous start-stop system • Half-duplex - Max. transmission cable length : $1640 \mathrm{ft}(500 \mathrm{~m})$ - Maximum communication speed : 38.4 kbps	
	$\begin{aligned} & \text { [DX+], } \\ & \text { [DX-], } \\ & \text { [SD] } \end{aligned}$	Standard RJ-45 connector (RS-485 communication port 2) (*4)	A communications port transmits data through the RS-485 multipoint protocol between the inverter and a personal computer or other equipment such as a PLC. The protocol selection is available from the following. - Modbus RTU - Fuji general-purpose inverter protocol - Asynchronous start-stop system • Half-duplex - Max. transmission cable length : $1640 \mathrm{ft}(500 \mathrm{~m})$ - Maximum communication speed : 38.4kbps	
	[CAN+] [CAN-], [SHLD]	Standard RJ-45 connector (CAN communication port) (*5)	Commicication Profile: CiA CANOpen DS-301 and DSP-402	

(*1) In case of applying bais/gain function.
(*2) Only FRN $\square \square \square \mathrm{E} 2 \square-\square \mathrm{GB}$ has the FM2 output. Not pulse monitor but analog monitor (voltage / current output) is available.
(*3) Exclusive use. Need to swich on the terminal PCB
(*4) FRN $\square \square \square E 2 \square-\square G A$ has the RJ-45 connector on the terminal PCB. The CAN bus communication is also available via this connector. But it can not use with RS-485 communication at the same time
FRN $\square \square \square E 2 \square-\square G B$ has the bar terminal on the terminal PCB instead of the RJ45 connector. The CAN bus communication is not available in this type.
(*5) In the RJ-45 connector on the terminal PCB. Concurrent use with RS-485 communications is not available.

Type

How To Read The Model Number

External Dimensions

Power supply voltage	Inverter type	Dimenntion［mm］		
		D	D1	D2
3 －phase 200V series	FRN0001E2S－2G口	85	77	8
	FRN0002E2S－2G口	85	77	8
	FRN0004E2S－2G口	100	77	23
	FRN0006E2S－2G口	132	84	48
1－phase 200V series	FRN0001E2S－7G口	85	77	8
	FRN0002E2S－7G口	85	77	8
	FRN0003E2S－7G口	107	84	23
	FRN0005E2S－7G口	152	104	48

Power supply voltage	Inverter type	Dimenntion［mm］		
		119	85	34
	FRNO004E2S－4G \square	143	85	58
	FRNO006E2S－4G \square	143	85	58
	FRN0007E2S－4G \square	143	85	58
3－phase 200V series	FRN0010E2S－2G \square	143	85	58
	FRN0012E2S－2G \square	143	85	58
1－phase 200V series	FRN0008E2S－7G \square	153	95	58

External Dimensions

Power supply voltage	Inverter type
3-phase 400 V series	FRN0037E2S-4 \square
	FRN0044E2S-4 \square
	FRN0056E2S-2 \square

Power supply voltage	Inverter type
3 -phase 400V series	FRN0059E2 \square-4 \square
	FRN0072E2 \square-4 \square
	FRN0088E2 \square-2 \square

[Unit:mm]

External Dimensions

External Dimensions

Power supply voltage	Inverter type
3-phase 400V series	FRN0361E2 \square-4 \square

Power supply voltage	Inverter type	Dimenntion [mm]		
		D	D1	104
	FRN			
	FRN0002E2E-2GA	112	104	8
	FRN0004E2E-2GA	127	104	23
	FRN0006E2E-2GA	152	104	48
1-phase 200V series	FRN0001E2E-7G \square	112	104	8
	FRN0002E2E-7G \square	112	104	8
	FRN0003E2E-7G \square	127	104	23

External Dimensions

Keypad

Figure of panel cut dimensions (Arrow A)

TP-A1-E2C Multi function Keypad (Option)

[Unit:mm]

Options

Adapter

Type	Option	Functions
OPC-E2-ADP1	Mounting adapter for option card	ADP1:The adapter is mounted on the front side of the inverter. The adapter is used from 0002 to 0044 of $400 \mathrm{~V}, 0001$ to 0069 of 200 V for FRENIC-Ace.
OPC-E2-ADP2		ADP2:The adapter is mounted inside of the inverter. The adapter is used from 0059 to 0072 of 400V, 0069 to 0115 of 200V for FRENIC-Ace.
OPC-E2-ADP3		ADP3:The adapter is mounted inside of the inverter. The adapter is used in more than 0085 of 400V for FRENIC-Ace.

Communication, //O Parts

Type	Option	Functions
OPC-DEV	DeviceNet communications card	The DeviceNet interface option enables the FRENIC-Ace series of the inverters to interface with DeviceNet and the FRENIC-Ace can be operated as a DeviceNet slave.
OPC-CCL	CC-Link communications card	The CC-Link interface option enables the FRENIC-Ace series of the inverters to interface with CC-Link and the FRENIC-Ace can be operated as a CC-Link slave.
OPC-DIO	Digital I/O interface card	DI: The frequency set-point can be given by 8,12 bits and BCD code(0 to 99.9/0 to 999) and extended 13 digital inputs are available mounting this card in the inverter. DO: The monitoring with 8bit binary code and the digital outputs (extended 8 point) are available.
OPC-AIO	Analog I/O interface card	The Analog I/O interface card enables the FRENIC-Ace series of the inverter to input analog set-points to the inverter and output analog monitors from the inverter.

* Parts adapter is necessary on the occasion of setting.

Parts Using The Control Terminal Stand

Type	Option	Functions
OPC-E2-RS	RS485 communications card	The RS-485 communications card provides two ports exclusively designed for use with the FRENIC-Ace series of the inverters.
OPC-E2-PG	PG interface (5V) card	Speed control ,position control and synchronous drive are available mounting this card in the inverter. - Open collector (pull-up resistor: 620): 30 kHz - Complementary (totem-pole push-pull) - Voltage output
OPC-E2-PG3	PG interface (12/15V) card	Speed control, position control and synchronous drive are available mounting this card in the inverter. - Open collector (pull-up resistor: 2350Ω): 30 kHz - Complementary (totem-pole push-pull) - Voltage output:100kHz

Keypad

Type	Option	
TP-A1-E2C	Multi-functional keypad	LCD(Liquid Crystal Display) with a back light.

NEMA1 Kit

Power supply Voltage	Inverter type	Option type
Three-phase 400V	FRN0059E2■-4\#	NEMA1-72E2-4
	FRN0072E2■-4\#	
	FRN0085E2■-4\#	NEMA1-105E2-4
	FRN0105E2-4\#	
	FRN0139E2■-4\#	NEMA1-203E2-4
	FRN0168E2■-4\#	
	FRN0203E2■-4\#	
	FRN0240E2■-4\#	NEMA1-110G1-4
	FRN0290E2■-4\#	
	FRN0361E2■-4\#	NEMA1-160G1-4
	FRN0415E2■-4\#	
	FRN0520E2■-4\#	NEMA1-590E2-4
	FRN0590E2■-4\#	

\#: Destination (A:for Asia, E:for Europe, K:for Korean)
© S: Standard (basic type), E: EMC filter built-in type (0059 to 0590)

DC Reactor (DCR $\square-\square \square \square$)

Fig. A

Fig. B

Fig. C

Voltage		Inverter Type				REACTOR Type	Fig	Dimension [mm]									Approx Weight [kg]	
	applied motor [kW]	ND Specification	HD Specification	HND Specification	HHD Specification			W	W1	D	D1	D2	H	H1	G	J		
$\begin{gathered} \text { 3-phase } \\ 400 \mathrm{~V} \end{gathered}$	0.4	-	-	-	FRN0002E2-4\#	DCR4-0.4	A	66	56	90	72	15	94	M4(5.2×8)		M4	1	
	0.75	FRN0002E2-4\#	FRN0002E2-4\#	FRN0002E2-4\#	FRN0004E2-4\#	DCR4-0.75						20				1.4		
	1.1	-	FRN0004E2-4\#	FRN0004E2-4\#	-	DCR4-1.5												
	1.5	FRN0004E2-4\#	-	-	FRN0006E2-4\#	DCR4-1.5												
	2.2	FRN0006E2 --4\#	FRN0006E2 --4\#	FRN0006E2 --4\#	FRN0007E2-4\#	DCR4-2.2		86	71	100	80	15	110	-	M5(6×9)		2	
	3	FRN0007E2-4\#	FRN0007E2■-4\#	FRN0007E2-4\#	-	DCR4-3.7											2.6	
	3.7	-	-	-	FRN0012E2-4\#	DCR4-3.7						20						
	5.5	FRN0012E2-4\#\#	FRN0012E2-4\#	FRN0012E2-4\#	FRN0022E2-4\#	DCR4-5.5												
	7.5	-	FRN0022E2-4\#	FRN0022E2 --4\#	FRN0029E2-4\#	DCR4-7.5		111	95			24	130		M6(7x11)		M5	4.2
	11	FRN0022E2-4\#	FRN0029E2-4\#	FRN0029E2-4\#	FRN0037E2-4\#	DCR4-11												4.3
	15	FRN0029E2-4\#	FRN0037E2-4\#	FRN0037E2 --4\#	FRN0044E2-4\#	DCR4-15		146	124	120	96	15	168					5.9
	18.5	FRN0037E2-4\#\#	FRN0044E2-4\#	FRN0044E2-4\#	FRN0059E2-4\#	DCR4-18.5						25	171			M6	7.2	
	22	FRN0044E2-4\#	FRN0059E2-4\#	FRN0059E2-4\#	FRN0072E2-4\#	DCR4-22A												
	30	FRN0059E2-4\#	FRN0072E2 -4\#	FRN0072E2-4\#	FRN0085E2-4\#	DCR4-30B	B	152	90	157	115	100	130	190	M6(ø8)	M8	13	
	37	FRN0072E2 --4\#	FRN0085E2 - ${ }^{\text {an }}$	FRN0085E2 --4\#	FRN0105E2-4\#	DCR4-37C	C	210	185	101	81	105	125	-	M6(7x13)		7.4	
	45	FRN0085E2-4\#	FRNO105E2	FRN0105E2	FRN0139E2■-4\#	DCR4-45B	B	171	110	165	125	110	150	210	M6(ø8)		18	
	45	FRNOBSE2-4-4	FRNOUSE2-4\#	(RNOUSE2-4\#		DCR4-45C	C	210	185	106	86	120	125	-	M6(7x13)		8.4	
	55	FRN0105E2 --4\#	FRN0139E2 -4\#	FRN0139E2 -4\#	FRN0168E2-4\#	DCR4-55B	B	171	110	170	130	110	150	210	M6(ø8)		20	
		FRNOUSE2-4\#	FRNOMSE2 - 4 -	FRNOME2-4\#	FRNO160E2 ${ }^{\text {a }}$-4\#	DCR4-55C	255		225	96	76	120	145		M6(7×13)	M10	11	
	75	FRN0139E2 --4\#	FRN0168E2■-4\#	FRN0168E2-4\#	FRNO203E2-4\#	DCR4-75C			106	86	125			13				
	90	FRN0168E2-4\#\#	FRN0203E2-4\#	FRN0203E2-4\#	FRN0240E2-4\#	DCR4-90C			116	96	140			M12		15		
	110	FRN0203E2-4\#	FRN0240E2-4\#	FRN0240E2-4\#	FRN0290E2-4\#	DCR4-110C	C	300		265	90	175	155				19	
	132	FRN0240E2-4\#	FRN0290E2■-4\#	FRN0290E2-4\#	FRN0361E2-4\#	DCR4-132C			126		100	180	160			M8(10x18)	22	
	160	FRN0290E2-4\#	FRN0361E2 --4\#	FRN0361E2 --4\#	FRN0415E2 - - ${ }^{\text {a }}$	DCR4-160C		350	310	131	103		190			M10(12×22)	26	
	200	FRN0361E2 --4\#	FRN0415E2-4\#	FRN0415E2 --4\#	FRN0520E2-4\#	DCR4-200C				141	113	185					30	
	220	FRN0415E2 --4\#	FRN0520E2-4\#	FRN0520E2 --4\#	FRN0590E2-4\#	DCR4-220C				146	118	200					33	
	250	-	FRN0590E2-4\#	-	-	DCR4-250C				161	133	210					35	
	280	FRN0520E2-4\#	-	FRN0590E2 --4\#	-	DCR4-280C									M16		37	
	315	FRN0590E2-4\#	-	-	-	DCR4-315C		400	345	146	118	200	225				40	
3-phase 200V	0.1	-	-	-	FRN0001E2 --2\#	DCR2-0.2	66		56	90	72	5	94	-	M4(5.2×8)	M4	0.8	
	0.2	-	-	FRN0001E2 --2\#	FRN0002E2 --2\#	DCR2-0.2												
	0.4	-	-	FRN0002E2 --2\#	FRN0004E2-2\#	DCR2-0.4			15			1						
	0.75	-	-	FRN0004E2--2\#	FRN0006E2-2\#	DCR2-0.75						1.4						
	1.1	-	-	FRN0006E2■-2\#	-	DCR2-1.5			20			1.6						
	1.5	-	-	-	FRN0010E2 --2\#	DCR2-1.5						1.6						
	2.2	-	-	FRN0010E2■-2\#	FRN0012E2--2\#	DCR2-2.2		86		71	100	80	10	110			M5(6×9)	1.8
	3	-	-	FRN0012E2--2\#	-	DCR2-3.7							20					2.6
	3.7	-	-	-	FRN0020E2 --2\#	DCR2-3.7												
	5.5	-	-	FRN0020E2-2\#	FRN0030E2S-2\#	DCR2-5.5		111		95				130		M6(7x11)	M5	3.6
	7.5	-	-	FRN0030E2S-2\#	FRN0040E2S-2\#	DCR2-7.5			23						3.8			
	11	-	-	FRN0040E2S-2\#	FRN0056E2S-2\#	DCR2-11	A		24				137		M6		4.3	
	15	-	-	FRN0056E2S-2\#	FRN0069E2S-2\#	DCR2-15		146	124	120	96	15	180		M8		5.9	
	18.5	-	-	FRN0069E2S-2\#	FRN0088E2S-2\#	DCR2-18.5						25					7.4	
	22	-	-	FRN0088E2S-2\#	FRN0115E2S-2\#	DCR2-22A											7.5	
	30	-	-	FRN0115E2S-2\#	-	DCR2-30B		152	90	156	116	115	130	190	M6(ø8)	M10	12	
	0.1	-	-	-	FRN0001E2 --7\#	DCR2-0.2		66	56	90	72	5	94	-	M4(5.2×8)	M4	0.8	
	0.2	-	-	-	FRN0002E2-7\#	DCR2-0.4						15						
singlephase	0.4	-	-	-	FRN0003E2-7\#	DCR2-0.75						20					1.4	
	0.75	-	-	-	FRN0005E2 --7\#	DCR2-1.5											1.6	
	1.5	-	-	-	FRN0008E2-7\#	DCR2-3.7		86	71	100	80		110		M5(6×9)		2.6	
	2.2	-	-	-	FRN0011E2 --7\#	DCR2-3.7												

S: Standard (basic type), E: EMC filter built-in type

NOTES

When running general-purpose motors

- Driving a 400V general-purpose motor

When driving a 400 V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation

- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

- Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2 -pole motor at 60 Hz or more may cause abnormal vibration.

* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump frequency control to avoid resonance points.

- Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

When running special motors

- Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

- Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.
Do not use inverters for driving motors equipped with series-connected brakes.

- Geared motors

If the power transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

- Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

Environmental conditions

- Installation location

Use the inverter in a location with an ambient temperature range of -10 to $50^{\circ} \mathrm{C}$.
The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

- Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

- Installing a magnetic contactor (MC)
in the output (secondary) circuit
If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC)
in the input (primary) circuit
Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

- Protecting the motor

The electronic thermal facility of the inverter can protect the general-purpose motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.
If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

- Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.
- Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

- Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.
We recommend connecting a DC REACTOR to the inverter.

- Megger test

When checking the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the Instruction Manual.

Wiring

- Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20 m .

- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (highfrequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50 m . If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).
When wiring is longer than 50 m , and sensorless vector control or vector control with speed sensor is selected, execute off-line tuning

- Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Fuji Electric Co.,Ltd.

Gate City Ohsaki, East Tower, 11-2,
Osaki 1-chome, Shinagawa-ku,
Tokyo 141-0032, Japan
Phone: +81-3-5435-7057 Fax: +81-3-5435-7420

[^0]: \square Sensorless dynamic torque vector control
 ■ Motor vector control with PG (with optional card)
 \square Synchronous motor with sensorless vector control
 \square 2-channel on-board RS485 communications port

 - Standard CANopen compatibility
 - Removable keypad device
 \square Removable control terminal block board

[^1]: *1 Fuji 4 -pole standard motor. At the selection of the inverter rating, consider not only the rating capacity(kW) is enough but also inverter output current is larger than selected the motor's nominal current.
 *2 Rated capacity is calculated by assuming the output rated voltage as 440 V .
 *3 Output voltage cannot exceed the power supply voltage.
 *4 When the carrier frequency (F26) is set to below value or higher, the inverter is sure to be necessary to derate their nominal current.
 HHD spec. ---type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to $0168: 10 \mathrm{kHz}$, type 0203 to $0590: 6 \mathrm{kHz}$
 HND spec..--type 0002 to $0012: 8 \mathrm{kHz}$, type 0022 to 0059 : 10 kHz , type 0072 to $0168: 6 \mathrm{kHz}$, type 0203 to $0590: 4 \mathrm{kHz}$
 HD,ND spec. ---All type : 4kHz
 The rated output current at $H D / N D$ spec. is decreased 2% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}$
 *5 The value is calculated assuming that the inverter is connected with a power supply with the capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and $\% \mathrm{X}$ is 5%. of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds
 Be sure to use the DCR when applicable motor capacity is 7 kW or above.
 *6 Obtained when a DC reactor (DCR) is used.
 ${ }^{*} 7$ Average braking torque for the motor running alone. (It varies with the efficiency of the motor.)
 *8 Voltage unbalance (\%) $=($ Max. voltage $(M)-$ Min. voltage (M))/Three -phase average voltage (M)
 Voltage unbalance $(\%)=($ Max. voltage $(M)-$ Min. voltage (N)) Three -phase average voltage (M)
 $\times 67$ (IEC $61800-3$) If this value is 2 to 3%, use an optional AC reactor ((ACR).
 HND spec. of the type 0007 and 0012 : allowable ambient temperature $40^{\circ} \mathrm{C}\left(+104{ }^{\circ} \mathrm{F}\right.$) or less. The rated output current at HND spec. is decreased 1% for every $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ when ambient temperature is $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ or more.

[^2]: Note : The meaning of the described abbreviations are shown as follows. VF V/f control
 IM-SVC(DTV) Speed sensorless vector control (Dynamictorquevector control)
 VF with SC V/f control with slip compensation
 IMPG-VF V/f control with speed sensor (The PG option card is required.)
 IMPG-ATB V/f control with speed sensor (+Auto Torque Boost)(The PG option card is required.)
 IMPG-VC Vector control with speed sensor (The PG option card is required.)
 PM-SVC Magnetic pole position sensorless vector control

